Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography.

نویسندگان

  • H W Huang
  • C H Lin
  • C C Yu
  • B D Lee
  • C H Chiu
  • C F Lai
  • H C Kuo
  • K M Leung
  • T C Lu
  • S C Wang
چکیده

Enhanced light extraction from a GaN-based power chip (PC) of green light-emitting diodes (LEDs) with a rough p-GaN surface using nanoimprint lithography is presented. At a driving current of 350 mA and with a chip size of 1 mm × 1 mm packaged on transistor outline (TO)-cans, the light output power of the green PC LEDs with nano-rough p-GaN surface is enhanced by 48% when compared with the same device without a rough p-GaN surface. In addition, by examining the radiation patterns, the green PC LED with nano-rough p-GaN surface shows stronger light extraction with a wider view angle. These results offer promising potential to enhance the light output powers of commercial light-emitting devices by using the technique of nanoimprint lithography under suitable nanopattern design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output p...

متن کامل

Enhancement of light output power of GaN-based light-emitting diodes with photonic quasi-crystal patterned on p-GaN surface and n-side sidewall roughing

In this paper, GaN-based light-emitting diodes (LEDs) with photonic quasi-crystal (PQC) structure on p-GaN surface and n-side roughing by nano-imprint lithography are fabricated and investigated. At an injection current of 20 mA, the LED with PQC structure on p-GaN surface and n-side roughing increased the light output power of the InGaN/GaN multiple quantum well LEDs by a factor of 1.42, and t...

متن کامل

Use of a patterned current blocking layer to enhance the light output power of InGaN-based light-emitting diodes.

We employed a patterned current blocking layer (CBL) to enhance light output power of GaN-based light-emitting diodes (LEDs). Nanoimprint lithography (NIL) was used to form patterned CBLs (a diameter of 260 nm, a period of 600, and a height of 180 nm). LEDs (chip size: 300 × 800 µm2) fabricated with no CBL, a conventional SiO2 CBL, and a patterned SiO2 CBL, respectively, exhibited forward-bias ...

متن کامل

Enhanced light extraction from a GaN-based green light-emitting diode with hemicylindrical linear grating structure.

Significant enhancement in the light output from GaN-based green light-emitting diodes (LEDs) was achieved with a hemicylindrical grating structure on the top layer of the diodes. The grating structure was first optimized by the finite-difference time-domain (FDTD) method, which showed that the profile of the grating structure was critical for light extraction efficiency. It was found that the ...

متن کامل

Investigation of the Effect of Recombination on Superluminescent Light-Emitting Diode Output Power Based on Nitride Pyramid Quantum Dots

In this article, the temperature behavior of output power of superluminescent light-emitting diode (SLED) by considering the effect of non-radiative recombination coefficient, non-radiative spontaneous emission coefficient and Auger recombination coefficients has been investigated. For this aim, GaN pyramidal quantum dots were used as the active region. The numerical method has been used to sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 19 18  شماره 

صفحات  -

تاریخ انتشار 2008